「たまに本職から離れて骨休めをする必要があるときには、数学のことを考えます」と、デ=グレイは言う。そして昨年のクリスマスの間、その機会を得たのだ。

プロの数学者ではない数学愛好家が長年の未解決問題に重大な進展をもたらしたのは、異例ではあるが、まったくない話ではない。
数学の背景的知識がない主婦のマージョリー・ライスは、1970年代に科学誌『サイエンティフィック・アメリカン』に掲載された、平面に敷き詰められた五角形に関するコラムを偶然目にした。
その後、ライスは最終的に五角形のリストに、新たに4種類の五角形を追加した。

エルサレムにあるヘブライ大学の数学者ギル・カライは、「プロでない数学者が大きな前進をもたらすのを目の当たりにするのは、愉快なことです」と話す。
「数学的な体験には、多様な側面があります。こうしたプロではない数学者が難問に大きな前進をもたらすのは、さまざまな側面を増やします」

「モーザースピンドル」で独自のグラフを構築
ハドヴィガー=ネルソン問題は、これとは少し異なる。
地図上にあると考えられるような有限数の頂点を考えるのではない。頂点が無数に存在し、その一つひとつが平面上の各点に対応するケースを考えるからだ。

2点がちょうど1単位の距離だけ離れていれば、その2点は辺で接続される。彩色数の下界を見つけるには、特定の数の色が不可欠な、有限個の頂点でできたグラフをつくればいい。これこそが、デ=グレイが成し遂げたことだ。

デ=グレイは「モーザースピンドル」と呼ばれる特徴的なグラフに基づいて、自身のグラフを構築した。モーザースピンドルは、数学者兄弟のレオ・モーザーとウィリアム・モーザーにちなんで命名されたグラフだ。
これは、わずか7個の点と11本の辺で構成されており、彩色数が4となる。

デ=グレイは精妙なプロセスを通じて、コンピューターによる支援は最小限しか使用しなかった。そしてモーザースピンドルのコピー複数と、もうひとつ別の小規模な「点の集合体」を融合させ、4色では彩色できない20,425頂点の巨大グラフを構築したのだ。