初等関数(しょとうかんすう、英: Elementary function)とは、
実数または複素数の1変数関数で、代数関数、指数関数、対数関数、
三角関数、逆三角関数および、それらの合成関数を作ることを
有限回繰り返して得られる関数のことである
ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない
初等関数のうちで代数関数でないものを初等超越関数という
双曲線関数やその逆関数も初等関数である
初等関数の導関数はつねに初等関数になる
探検
■初等関数研究室■
■ このスレッドは過去ログ倉庫に格納されています
2019/06/15(土) 22:06:56.50ID:OFuB9G1G0
85名無し生涯学習
2019/06/23(日) 15:28:40.96ID:is8LyV+/0 いま、n人掛けの椅子はa_n人分のスペースが
孤立して残ると期待されるとする
例えば、n=0では誰も座れずa_0=0となり、
n=1ではやはりカップルは座れないが椅子は余るのでa_1=1、
n=2ではカップルが一組座って終わりなのでa_2=0、
n=3でも座れるカップルは一組だが1人分スペースが余るので
a_3=1となる
もし、一番最初のカップルが片端からk+1,k+2個目を
占有したとしたらどうなるだろうか
これは、その端からk個目までのk個と、
k+3個目から反対端までのn-k-2個が分断される
ことを意味する
つまり、k人掛けの椅子とn-k-2人掛けの椅子がある
という状況と同一視できる
Table[Sum[(-2)^k(n-k)/k!,{k,0,n-1}],{n,1,20}]
孤立して残ると期待されるとする
例えば、n=0では誰も座れずa_0=0となり、
n=1ではやはりカップルは座れないが椅子は余るのでa_1=1、
n=2ではカップルが一組座って終わりなのでa_2=0、
n=3でも座れるカップルは一組だが1人分スペースが余るので
a_3=1となる
もし、一番最初のカップルが片端からk+1,k+2個目を
占有したとしたらどうなるだろうか
これは、その端からk個目までのk個と、
k+3個目から反対端までのn-k-2個が分断される
ことを意味する
つまり、k人掛けの椅子とn-k-2人掛けの椅子がある
という状況と同一視できる
Table[Sum[(-2)^k(n-k)/k!,{k,0,n-1}],{n,1,20}]
86名無し生涯学習
2019/06/23(日) 15:29:52.01ID:is8LyV+/0 重合度nのPVA(ポリビニルアルコール)があるとする
ここに、大過剰のホルムアルデヒド(HCHO)を用いて架橋を行う
即ち、各HCHO分子はPVAの隣り合う2つのOH基を架橋する
PVAのOH基をHCHOで架橋したものはビニロンと呼ばれる繊維になり、
残存するOH基の量に応じて吸水性などのパラメータが変わる
ここで、各HCHO分子は全くランダムな位置を架橋していくとし、
PVA とは架橋以外の相互作用をしないとする
もし、片端から3,4つ目のOHが架橋され、その後
6,7つ目のOHも架橋されたとすると、HCHOは5つ目のOHを
架橋できないことになる(隣り合うOHの架橋以外の相互作用を
認めないという仮定を用いた)
HCHO は大過剰存在するので、隣り合うOHがなくなるまで
架橋は進むとする
このとき、全てのOHの内、いくつが架橋されずに残ると
期待されるかnで表せ
ここに、大過剰のホルムアルデヒド(HCHO)を用いて架橋を行う
即ち、各HCHO分子はPVAの隣り合う2つのOH基を架橋する
PVAのOH基をHCHOで架橋したものはビニロンと呼ばれる繊維になり、
残存するOH基の量に応じて吸水性などのパラメータが変わる
ここで、各HCHO分子は全くランダムな位置を架橋していくとし、
PVA とは架橋以外の相互作用をしないとする
もし、片端から3,4つ目のOHが架橋され、その後
6,7つ目のOHも架橋されたとすると、HCHOは5つ目のOHを
架橋できないことになる(隣り合うOHの架橋以外の相互作用を
認めないという仮定を用いた)
HCHO は大過剰存在するので、隣り合うOHがなくなるまで
架橋は進むとする
このとき、全てのOHの内、いくつが架橋されずに残ると
期待されるかnで表せ
88名無し生涯学習
2019/06/23(日) 15:31:52.45ID:is8LyV+/0 ■古典的確率模型
Ω={ω1,ω2, . . . ,ωn}(有限集合)
B=2^Ω(Ωのべき集合;Ωの部分集合すべてからなる集合族)
P(A)=#A/#Ω,A∈B(#Aは集合Aの元の個数)
Ω={ω1,ω2, . . . ,ωn}(有限集合)
B=2^Ω(Ωのべき集合;Ωの部分集合すべてからなる集合族)
P(A)=#A/#Ω,A∈B(#Aは集合Aの元の個数)
89名無し生涯学習
2019/06/23(日) 15:33:51.68ID:is8LyV+/0 この確率空間(Ω,B,P)を古典的確率模型という
サイコロを1回投じる
Ω={1, 2, 3, 4, 5, 6}, P({ω})=1/6(∀ω∈Ω).
P(奇数の目が出る)=P({1, 3, 5})=#{1, 3, 5}/#Ω=3/6=1/2.
コインを2回投げる
Ω={HH, HT, TH, TT},P({ω})=1/4(∀ω∈Ω).
(Hは表(head),Tは裏(tail)を意味する)
サイコロを1回投じる
Ω={1, 2, 3, 4, 5, 6}, P({ω})=1/6(∀ω∈Ω).
P(奇数の目が出る)=P({1, 3, 5})=#{1, 3, 5}/#Ω=3/6=1/2.
コインを2回投げる
Ω={HH, HT, TH, TT},P({ω})=1/4(∀ω∈Ω).
(Hは表(head),Tは裏(tail)を意味する)
90名無し生涯学習
2019/06/23(日) 15:34:58.14ID:is8LyV+/0 (a-b-c)(a+b-c)(a-b+c)(a+b+c)
a^4-2a^2b^2-2a^2c^2+b^4-2b^2c^2+c^4
a^4-2a^2b^2-2a^2c^2+b^4-2b^2c^2+c^4
91名無し生涯学習
2019/06/23(日) 16:12:36.49ID:is8LyV+/0 一方、もしk人掛けの椅子ではx人分、n-k-2人掛けではy人分、
孤立したスペースを生じると期待されるとすれば、k人掛けの椅子と
n-k-2人掛けの椅子が両方あればx+y人分の孤立スペースが
出来ると期待される
以上より、最初のカップルがk+1,k+2個目を占有したなら、
孤立して残るスペースはa_k + a_n-k-2人分と期待される
各位置に座る確率はまったくランダムであるから、
この事象は1/(n-1)の確率でおきる
故に、a_nはa_0,a_1, ・ ・ ・a_n-2を用いて次のように表せる
a_n=(1/(n-1))sum[a_k + a_n-k-2,{k,0,n-2}]
=(2/(n-1))sum[a_k,{k,0,n-2}]
この式をより簡潔にする
両辺をn-1倍した式について、nにn+2を代入した式から
n+1を代入した式を引く
(n-1)a_n=2sum[a_k + a_n-k-2,{k,0,n-2}]
(n+1)a_n+2 - na_n+1=2sum[a_k,{k,0,n}]-2sum[a_k,{k,0,n-1}]=2a_n
∴(n+1)a_n+2=na_n+1 + 2a_n
孤立したスペースを生じると期待されるとすれば、k人掛けの椅子と
n-k-2人掛けの椅子が両方あればx+y人分の孤立スペースが
出来ると期待される
以上より、最初のカップルがk+1,k+2個目を占有したなら、
孤立して残るスペースはa_k + a_n-k-2人分と期待される
各位置に座る確率はまったくランダムであるから、
この事象は1/(n-1)の確率でおきる
故に、a_nはa_0,a_1, ・ ・ ・a_n-2を用いて次のように表せる
a_n=(1/(n-1))sum[a_k + a_n-k-2,{k,0,n-2}]
=(2/(n-1))sum[a_k,{k,0,n-2}]
この式をより簡潔にする
両辺をn-1倍した式について、nにn+2を代入した式から
n+1を代入した式を引く
(n-1)a_n=2sum[a_k + a_n-k-2,{k,0,n-2}]
(n+1)a_n+2 - na_n+1=2sum[a_k,{k,0,n}]-2sum[a_k,{k,0,n-1}]=2a_n
∴(n+1)a_n+2=na_n+1 + 2a_n
92名無し生涯学習
2019/06/23(日) 16:14:09.61ID:is8LyV+/0 ■a_nの評価
a_n=Sum[(-2)^k(n-k)/k!,{k,0,n-1}]
=(n)Sum[(-2)^k/k!,{k,0,n-1}]-Sum[(-2)^k/(k-1)!,{k,1,n-1}]
■n→∞の極限を考える
a_n≒(n)Sum[(-2)^k/k!,{k,0,∞}]+(2)Sum[(-2)^(k-1)/(k-1)!,{k,1,∞}]
=n/e^2 + 2/e^2=(n)e^(-2) + (2)e^(-2)≒(n)e^(-2)
従って、nが十分大きい時、a_n即ち孤立した椅子の数は
全体のe^(-2)という割合になると考えられる
a_n=Sum[(-2)^k(n-k)/k!,{k,0,n-1}]
=(n)Sum[(-2)^k/k!,{k,0,n-1}]-Sum[(-2)^k/(k-1)!,{k,1,n-1}]
■n→∞の極限を考える
a_n≒(n)Sum[(-2)^k/k!,{k,0,∞}]+(2)Sum[(-2)^(k-1)/(k-1)!,{k,1,∞}]
=n/e^2 + 2/e^2=(n)e^(-2) + (2)e^(-2)≒(n)e^(-2)
従って、nが十分大きい時、a_n即ち孤立した椅子の数は
全体のe^(-2)という割合になると考えられる
93名無し生涯学習
2019/06/23(日) 18:13:45.39ID:is8LyV+/0 高次精度風上差分法
94名無し生涯学習
2019/06/23(日) 22:01:07.72ID:is8LyV+/0 モックテータ関数は、S. Ramanujan が1920年に G. H. Hardy へ宛てた
最後の手紙、および Ramanujan の「失われたノート」と呼ばれる
草稿中で、初めて言及した関数である
最後の手紙、および Ramanujan の「失われたノート」と呼ばれる
草稿中で、初めて言及した関数である
95名無し生涯学習
2019/06/23(日) 22:11:01.99ID:is8LyV+/0 ■有限単純群モンスター
モンスターとは、およそ8.08×10^53個,正確には
2^46・3^20・5^9・7^6・11^2・13^3・17・19・23・29・31・41・47・59・71=
808017424794512875886459904961710757005754368000000000個の
元からなる巨大な群である
ちなみにアボガドロ定数はおよそ6.02 ×10^23である
モンスターは豊かな構造をもつ興味深い研究対象である
モンスターとは、およそ8.08×10^53個,正確には
2^46・3^20・5^9・7^6・11^2・13^3・17・19・23・29・31・41・47・59・71=
808017424794512875886459904961710757005754368000000000個の
元からなる巨大な群である
ちなみにアボガドロ定数はおよそ6.02 ×10^23である
モンスターは豊かな構造をもつ興味深い研究対象である
96名無し生涯学習
2019/06/23(日) 22:12:29.64ID:is8LyV+/0 ■Mathieu Moonshine 現象
97名無し生涯学習
2019/06/24(月) 13:30:19.86ID:5hCr8BXH0 ガンマ関数
Γ
η
δ
Π
ε
α
β
z^5 - z^4 + z^2 + 1
20世紀中頃になり,Shannon により論理代数に
基づく論理回路設計法が示された.
ComplexExpand[(1+E^(I Pi+I n Pi)+2 n)/4]
(1+E^(I Pi+I nPi)+2n)/4
Γ
η
δ
Π
ε
α
β
z^5 - z^4 + z^2 + 1
20世紀中頃になり,Shannon により論理代数に
基づく論理回路設計法が示された.
ComplexExpand[(1+E^(I Pi+I n Pi)+2 n)/4]
(1+E^(I Pi+I nPi)+2n)/4
98名無し生涯学習
2019/06/24(月) 13:34:29.31ID:5hCr8BXH0 K3曲面は超弦理論のコンパクト化で基本的な役割を果たす
事が知られているが、最近その位相的不変量である
楕円種数に面白うことが分かった
K3曲面上の超弦理論は N=4 共形不変性を持つため楕円種数を
N = 4 共形代数の指標で展開してその展開係数を調べると、
これらがマシュー群M24と呼ばれる離散群の規約表現の
次元の和に分解できる
これはモジュラーJ関数のq展開の係数がモンスター群の
規約表現の和に分解されるいわゆるMonsterous Moonshine
と呼ばれる現象に良く似ている
事が知られているが、最近その位相的不変量である
楕円種数に面白うことが分かった
K3曲面上の超弦理論は N=4 共形不変性を持つため楕円種数を
N = 4 共形代数の指標で展開してその展開係数を調べると、
これらがマシュー群M24と呼ばれる離散群の規約表現の
次元の和に分解できる
これはモジュラーJ関数のq展開の係数がモンスター群の
規約表現の和に分解されるいわゆるMonsterous Moonshine
と呼ばれる現象に良く似ている
99名無し生涯学習
2019/06/24(月) 13:40:15.50ID:5hCr8BXH0 有限単純群にはいくつかの無限系列と26個の例外があり、
例外中で最大のものがモンスターである
1970年代前半に有限単純群の分類の試みの中でモンスターが
発見された後、1970年代後半になってムーンシャインとよばれる
不思議な現象が見出された
http://imetrics.co.jp/opinion/MonsterousMoonshine.pdf
例外中で最大のものがモンスターである
1970年代前半に有限単純群の分類の試みの中でモンスターが
発見された後、1970年代後半になってムーンシャインとよばれる
不思議な現象が見出された
http://imetrics.co.jp/opinion/MonsterousMoonshine.pdf
100名無し生涯学習
2019/06/24(月) 13:40:56.82ID:5hCr8BXH0 ■SYZ予想(SYZ conjecture)
101名無し生涯学習
2019/06/24(月) 14:33:41.54ID:5hCr8BXH0 ■アポロニウスの問題
102名無し生涯学習
2019/06/24(月) 14:41:19.39ID:5hCr8BXH0 Monsterous moonshine は70年代後半に発見され
10数年かけて数学者によって解決された
Mathieu moonshine の現象はその起源や意味がまだ全く不明である
最近は拡張されて Umbral moonshine, Enriques moonshine なども
見つかっている
10数年かけて数学者によって解決された
Mathieu moonshine の現象はその起源や意味がまだ全く不明である
最近は拡張されて Umbral moonshine, Enriques moonshine なども
見つかっている
103名無し生涯学習
2019/06/24(月) 15:45:10.79ID:5hCr8BXH0 文献
http://shochandas.xsrv.jp/divisor/somos.htm
数学セミナー 1993年3月号, 日本評論社, 「エレ解」
一松 信 「初等関数概説−いろいろな関数−」
森北出版(1998) p.84-87
187p.2268円
http://shochandas.xsrv.jp/divisor/somos.htm
数学セミナー 1993年3月号, 日本評論社, 「エレ解」
一松 信 「初等関数概説−いろいろな関数−」
森北出版(1998) p.84-87
187p.2268円
104名無し生涯学習
2019/06/24(月) 15:54:19.20ID:5hCr8BXH0 Table[C(n mod2,n mod3),{n,1,10}]
{1, 0, 1, 0, 0, 1, 1, 0, 1, 0}
{1, 0, 1, 0, 0, 1, 1, 0, 1, 0}
105名無し生涯学習
2019/06/24(月) 17:07:58.56ID:5hCr8BXH0 ■4x5マス式を短縮
長軸有利☆
Table[sum[C(2n-1+C(0,n-1)+C(0,n-3)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,3mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
長軸有利☆
Table[sum[C(2n-1+C(0,n-1)+C(0,n-3)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,3mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
106名無し生涯学習
2019/06/25(火) 16:41:55.45ID:fNM+QclS0 Table[((-2)^(1+n)E^2+2Gamma[1+n,-2]+n Gamma[1+n,-2])/(E^2 n!),{n,1,28}]
Table[(e^2(-2)^(n+1)+n Γ(n+1,-2)+2 Γ(n+1,-2))/(e^2 n!),{n,1,28}]
{1, 0, 1, 2/3, 1, 16/15, 11/9, 142/105, 67/45, 4604/2835,
2771/1575, 59086/31185, 86327/42525, 4389248/2027025,
7533469/3274425, 222205682/91216125, 109456873/42567525,
2670957188/986792625, 16332117629/5746615875,
614053057522/206239658625, 1520442379271/488462349375,
126606575859992/38979295480125, 345404844856129/102088631019375,
15773069242557338/4482618980214375, 23501345644011017/6431583754220625,
4671255121834288564/1232720219558953125,
7547413632563686237/1923043542511966875,
23846953668187649602/5873549281427953125}
Table[(e^2(-2)^(n+1)+n Γ(n+1,-2)+2 Γ(n+1,-2))/(e^2 n!),{n,1,28}]
{1, 0, 1, 2/3, 1, 16/15, 11/9, 142/105, 67/45, 4604/2835,
2771/1575, 59086/31185, 86327/42525, 4389248/2027025,
7533469/3274425, 222205682/91216125, 109456873/42567525,
2670957188/986792625, 16332117629/5746615875,
614053057522/206239658625, 1520442379271/488462349375,
126606575859992/38979295480125, 345404844856129/102088631019375,
15773069242557338/4482618980214375, 23501345644011017/6431583754220625,
4671255121834288564/1232720219558953125,
7547413632563686237/1923043542511966875,
23846953668187649602/5873549281427953125}
107名無し生涯学習
2019/06/25(火) 16:48:35.41ID:fNM+QclS0 ■フィボナッチ数列(英: Fibonacci sequence)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,
987, 1597, 2584, 4181, 6765, 10946, …
Fn=(1/sqrt(5))(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,
987, 1597, 2584, 4181, 6765, 10946, …
Fn=(1/sqrt(5))(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)
108名無し生涯学習
2019/06/25(火) 16:50:05.27ID:fNM+QclS0 384=8!!
53760=2(10!!)+12!!
8755200=8(12!!)+13(14!!)
1805690880=15(14!!)+12(16!!)+9(18!!)
471092428800=10(16!!)+15(18!!)+16(20!!)+5(22!!)
53760=2(10!!)+12!!
8755200=8(12!!)+13(14!!)
1805690880=15(14!!)+12(16!!)+9(18!!)
471092428800=10(16!!)+15(18!!)+16(20!!)+5(22!!)
109名無し生涯学習
2019/06/25(火) 17:22:24.01ID:fNM+QclS0 Π[j=1 to n]Π[k=1 to n]{4cos^2 πj/(2n+1)+4cos^2 πk/(2n+1)}
110名無し生涯学習
2019/06/25(火) 20:08:35.33ID:fNM+QclS0 無限個の部屋があるホテルに無限の人数客が泊まって
満室の状態だと思って下さい
そこに1人の客が泊まりにきました
そこで、既に泊まっている全員に隣の部屋に
移動してもらうことで、その人を泊めることができました
満室の状態だと思って下さい
そこに1人の客が泊まりにきました
そこで、既に泊まっている全員に隣の部屋に
移動してもらうことで、その人を泊めることができました
111名無し生涯学習
2019/06/25(火) 20:49:41.89ID:fNM+QclS0 長軸は三角数1,3,6,10,15,21の位置で1上がる仕掛けを
modに置き換えると式が短くできる
長軸有利☆
Table[sum[C(2n-1+C(0,3mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,n-2)-C(0,n-5),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
modに置き換えると式が短くできる
長軸有利☆
Table[sum[C(2n-1+C(0,3mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,n-2)-C(0,n-5),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
112名無し生涯学習
2019/06/25(火) 20:55:06.42ID:fNM+QclS0 ■□■
■□■
□■■
■□■
□■■
113名無し生涯学習
2019/06/26(水) 11:55:52.42ID:kkuKQtlV0 C(n,k)=(n/k)C(n-1,k-1)
☆
☆
114名無し生涯学習
2019/06/26(水) 18:27:33.11ID:kkuKQtlV0 1以上22以下の自然数の集合をSとする
Sの部分集合Tで、次の条件を満たすものを考える
[条件] Tに属する任意の2つの要素の差は4でも7でもない
Tの要素数の最大値はいくらか
1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19
4 8 12 16 20
Sの部分集合Tで、次の条件を満たすものを考える
[条件] Tに属する任意の2つの要素の差は4でも7でもない
Tの要素数の最大値はいくらか
1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19
4 8 12 16 20
115名無し生涯学習
2019/06/26(水) 18:28:51.01ID:kkuKQtlV0 Haskell 先生の答え
Prelude> let nextSub (x, y) = [(a,b)|i<-y,let a = i:x,let b = [j|j<-y,j>i,j/=i+4,j/=i+7]]
Prelude> let next x = concat $ map nextSub x
Prelude> let sols = iterate next [([],[1..22])]
Prelude> mapM_ print $ sols !! 10
Prelude> let nextSub (x, y) = [(a,b)|i<-y,let a = i:x,let b = [j|j<-y,j>i,j/=i+4,j/=i+7]]
Prelude> let next x = concat $ map nextSub x
Prelude> let sols = iterate next [([],[1..22])]
Prelude> mapM_ print $ sols !! 10
116名無し生涯学習
2019/06/26(水) 18:30:11.79ID:kkuKQtlV0 ([21,18,15,13,12,10,7,4,2,1],[])
([21,20,18,15,12,10,7,4,2,1],[])
([21,18,16,15,13,10,7,4,2,1],[])
([21,19,18,16,13,10,7,4,2,1],[])
([22,21,19,16,13,10,7,4,2,1],[])
([20,17,15,14,12,9,6,4,3,1],[])
([22,20,17,14,12,9,6,4,3,1],[])
([20,18,17,15,12,9,6,4,3,1],[])
([21,20,18,15,12,9,6,4,3,1],[])
([22,20,19,17,14,9,6,4,3,1],[])
([22,20,17,14,12,11,9,6,3,1],[])
([22,20,19,17,14,11,9,6,3,1],[])
([20,18,17,15,12,9,7,6,4,1],[])
([21,20,18,15,12,9,7,6,4,1],[])
([21,20,18,15,12,10,9,7,4,1],[])
([22,19,16,14,13,11,8,5,3,2],[])
([22,21,19,16,13,11,8,5,3,2],[])
([22,19,17,16,14,11,8,5,3,2],[])
([22,20,19,17,14,11,8,5,3,2],[])
([21,18,16,15,13,10,7,5,4,2],[])
([21,19,18,16,13,10,7,5,4,2],[])
([22,21,19,16,13,10,7,5,4,2],[])
([21,19,18,16,13,10,8,7,5,2],[])
([22,21,19,16,13,10,8,7,5,2],[])
([22,21,19,16,13,11,10,8,5,2],[])
([22,19,17,16,14,11,8,6,5,3],[])
([22,20,19,17,14,11,8,6,5,3],[])
([22,20,19,17,14,11,9,8,6,3],[])
Prelude> length $ sols !! 10
28
([21,20,18,15,12,10,7,4,2,1],[])
([21,18,16,15,13,10,7,4,2,1],[])
([21,19,18,16,13,10,7,4,2,1],[])
([22,21,19,16,13,10,7,4,2,1],[])
([20,17,15,14,12,9,6,4,3,1],[])
([22,20,17,14,12,9,6,4,3,1],[])
([20,18,17,15,12,9,6,4,3,1],[])
([21,20,18,15,12,9,6,4,3,1],[])
([22,20,19,17,14,9,6,4,3,1],[])
([22,20,17,14,12,11,9,6,3,1],[])
([22,20,19,17,14,11,9,6,3,1],[])
([20,18,17,15,12,9,7,6,4,1],[])
([21,20,18,15,12,9,7,6,4,1],[])
([21,20,18,15,12,10,9,7,4,1],[])
([22,19,16,14,13,11,8,5,3,2],[])
([22,21,19,16,13,11,8,5,3,2],[])
([22,19,17,16,14,11,8,5,3,2],[])
([22,20,19,17,14,11,8,5,3,2],[])
([21,18,16,15,13,10,7,5,4,2],[])
([21,19,18,16,13,10,7,5,4,2],[])
([22,21,19,16,13,10,7,5,4,2],[])
([21,19,18,16,13,10,8,7,5,2],[])
([22,21,19,16,13,10,8,7,5,2],[])
([22,21,19,16,13,11,10,8,5,2],[])
([22,19,17,16,14,11,8,6,5,3],[])
([22,20,19,17,14,11,8,6,5,3],[])
([22,20,19,17,14,11,9,8,6,3],[])
Prelude> length $ sols !! 10
28
117名無し生涯学習
2019/06/26(水) 18:38:57.55ID:kkuKQtlV0 Table[(1/16)[{1-(-1)^n}{(n+15)-(n-9)i^(n+1)}+8{1+(-1)^n}(3+i^n)],{n,1,20}]
{1, 2, 3, 4, 2, 2, 3, 4, 3, 2, 3, 4, 4, 2, 3, 4, 5, 2, 3, 4}
{1, 2, 3, 4, 2, 2, 3, 4, 3, 2, 3, 4, 4, 2, 3, 4, 5, 2, 3, 4}
118名無し生涯学習
2019/06/26(水) 18:42:23.51ID:kkuKQtlV0 Table[1/4(1-binomial(0,n-13)),{n,0,13}]
Table[(1-Binomial[0,-13+n])/4,{n,0,13}]
Table[Factor[(2+(-1)^n+(-1)^(1+n)-2Binomial[0,-13+n])/8],{n,0,13}]
Table[(1-Binomial[0,-13+n])/4,{n,0,13}]
Table[Factor[(2+(-1)^n+(-1)^(1+n)-2Binomial[0,-13+n])/8],{n,0,13}]
119名無し生涯学習
2019/06/28(金) 10:37:28.32ID:dtrE1uPu0 ( ‘∀‘)< 経路積分
120名無し生涯学習
2019/06/28(金) 10:54:33.83ID:dtrE1uPu0 P1stとQ1stは、『宝一つの時の自陣当たり数』の二乗と
それぞれの差分を表す関数の和で求められる
https://rio2016.5ch.net/test/read.cgi/math/1560604951/2-4
数学板であればこの回答は示しておきたいところ
しかし昨今、プログラムに頼りすぎて単純なロジックが
見えづらくなっていると思われる
それぞれの差分を表す関数の和で求められる
https://rio2016.5ch.net/test/read.cgi/math/1560604951/2-4
数学板であればこの回答は示しておきたいところ
しかし昨今、プログラムに頼りすぎて単純なロジックが
見えづらくなっていると思われる
121名無し生涯学習
2019/06/28(金) 17:04:55.58ID:dtrE1uPu0 Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(n-i)/n!, {i, 0, n}], {n, 0, 20}]
{1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199,
234615096, -4939227215, 113836841041, -2850860253240,
77087063678521, -2238375706930349, 69466733978519340,
-2294640596998068569, 80381887628910919255,
-2976424482866702081004, 116160936719430292078411}
{1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199,
234615096, -4939227215, 113836841041, -2850860253240,
77087063678521, -2238375706930349, 69466733978519340,
-2294640596998068569, 80381887628910919255,
-2976424482866702081004, 116160936719430292078411}
122名無し生涯学習
2019/06/28(金) 17:07:08.61ID:dtrE1uPu0 Table[-i*(BesselK[3/2,1]*BesselI[n+3/2,-1] - BesselI[3/2,-1]*BesselK[n+3/2,1]), {n, 0, 20}]
{0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215,
113836841041, 2850860253240, 77087063678521, 2238375706930349,
69466733978519340, 2294640596998068569, 80381887628910919255,
2976424482866702081004, -i (I_(41/2)(-1) K_(3/2)(1) - I_(3/2)(-1) K_(41/2)(1)),
-i (I_(43/2)(-1) K_(3/2)(1) - I_(3/2)(-1) K_(43/2)(1))}
なんだこれは(/・ω・)/
{0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215,
113836841041, 2850860253240, 77087063678521, 2238375706930349,
69466733978519340, 2294640596998068569, 80381887628910919255,
2976424482866702081004, -i (I_(41/2)(-1) K_(3/2)(1) - I_(3/2)(-1) K_(41/2)(1)),
-i (I_(43/2)(-1) K_(3/2)(1) - I_(3/2)(-1) K_(43/2)(1))}
なんだこれは(/・ω・)/
123名無し生涯学習
2019/06/30(日) 18:58:35.95ID:YDH5hO580 Table[sum[C(2n-1,k-1),{n,1,5}],{k,1,12}]+Table[C(2,k-2),{k,1,12}]
{5, 26, 72, 131, 166, 148, 91, 37, 9, 1, 0, 0}
{5, 26, 72, 131, 166, 148, 91, 37, 9, 1, 0, 0}
124名無し生涯学習
2019/06/30(日) 19:04:46.03ID:YDH5hO580 Table[sum[C(2n-1,k-1),{n,1,5}],{k,1,12}]+Table[C(3,k-2),{k,1,12}]
{5, 26, 73, 133, 167, 148, 91, 37, 9, 1, 0, 0}
{5, 26, 73, 133, 167, 148, 91, 37, 9, 1, 0, 0}
125名無し生涯学習
2019/07/01(月) 15:12:58.44ID:AzjA1/670 Table[sum[C(2n-1-C(0,n-5)-3C(0,n-9)-5C(0,n-14)-C(1,n-17)-C(1,n-19),k-1),{n,1,27}],{k,1,5}]+Table[sum[C(n(n+1)-1,k-2),{n,1,6}],{k,1,5}]
{27, 722, 12546, 161494, 1634573}
{27, 722, 12546, 161494, 1634573}
126名無し生涯学習
2019/07/01(月) 15:19:28.58ID:AzjA1/670 Table[sum[C(2n-1-C(0,n-5)-3C(0,n-9)-5C(0,n-14)-C(1,n-17)-C(1,n-19),k-1),{n,1,27}],{k,8,10}]+Table[sum[C(n(n+1)-1,k-2),{n,1,6}],{k,8,10}]
{558773693, 2890925540, 13162957237}
7 * 8 [8] : 558773693
7 * 8 [9] : 2890925540
7 * 8 [10] : 13162957237
{558773693, 2890925540, 13162957237}
7 * 8 [8] : 558773693
7 * 8 [9] : 2890925540
7 * 8 [10] : 13162957237
127名無し生涯学習
2019/07/01(月) 19:35:03.56ID:AzjA1/670 ■□■
□■■
■□■
■□■
□■■
□■■
■□■
■□■
□■■
128名無し生涯学習
2019/07/01(月) 22:02:48.41ID:AzjA1/670 Table[choose(17,k-1)+choose(15,k-1)+choose(13,k-1)+choose(11,k-1)+choose(10,k-1)+choose(8,k-1)+choose(5,k-1)+choose(4,k-1)+choose(1,k-1),{k,1,20}]
chooseを一つにした式に変形できますか?
三つならできた
短軸有利☆
Table[sum[C(2n-1+C(0,n-2)+C(1,n-4),k-1),{n,1,9}],{k,1,20}]
chooseを一つにした式に変形できますか?
三つならできた
短軸有利☆
Table[sum[C(2n-1+C(0,n-2)+C(1,n-4),k-1),{n,1,9}],{k,1,20}]
129名無し生涯学習
2019/07/02(火) 16:18:08.25ID:A7uGqeTb0130名無し生涯学習
2019/07/02(火) 16:18:58.65ID:A7uGqeTb0 ■真理値表(truth table)
■積和形論理式(sum-of-products form)
■二分決定グラフ(BDD, Binary Decision Diagram)
■積和形論理式(sum-of-products form)
■二分決定グラフ(BDD, Binary Decision Diagram)
131名無し生涯学習
2019/07/02(火) 16:20:45.73ID:A7uGqeTb0 論理式は,ある一つの論理関数を何通りにも表せるが,
これによって表せない論理関数はない.
つまり任意の論理関数に対して,それを表す論理式が
少なくとも一つは存在する.
すなわち,論理式は論理関数の完全(complete)
(または万能(universal))な表現であるといえる.
1 章 論理代数と論理関数 - 電子情報通信学会知識ベース
http://www.ieice-hbkb.org/files/01/01gun_08hen_01.pdf
これによって表せない論理関数はない.
つまり任意の論理関数に対して,それを表す論理式が
少なくとも一つは存在する.
すなわち,論理式は論理関数の完全(complete)
(または万能(universal))な表現であるといえる.
1 章 論理代数と論理関数 - 電子情報通信学会知識ベース
http://www.ieice-hbkb.org/files/01/01gun_08hen_01.pdf
132名無し生涯学習
2019/07/02(火) 16:23:07.80ID:A7uGqeTb0 Table[sum[C(2n-1+C(0,n-1)+C(0,n-3)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1-C(0,n-5),k-1),{n,1,9}],{k,1,20}]+Table[sum[C(n(n+1)-1,k-2),{n,1,3}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
Table[sum[C(2n-1-C(0,n-5),k-1),{n,1,9}],{k,1,20}]+Table[sum[C(n(n+1)-1,k-2),{n,1,3}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
133名無し生涯学習
2019/07/02(火) 16:24:23.29ID:A7uGqeTb0 +Table[sum[C(n(n+1)-1,k-2),{n,1,3}],{k,1,20}]は
長軸三角数位置1アップ関数
長軸三角数位置1アップ関数
134名無し生涯学習
2019/07/02(火) 16:43:16.00ID:A7uGqeTb0 同じく3×4の場合
Table[sum[C(2n-1+C(0,3mod n),k-1),{n,1,5}],{k,1,12}]
Table[sum[C(2n-1,k-1),{n,1,5}],{k,1,12}]+Table[sum[C(n(n+1)-1,k-2),{n,1,2}],{k,1,12}]
{5, 27, 76, 140, 176, 153, 92, 37, 9, 1, 0, 0}
Table[sum[C(2n-1+C(0,3mod n),k-1),{n,1,5}],{k,1,12}]
Table[sum[C(2n-1,k-1),{n,1,5}],{k,1,12}]+Table[sum[C(n(n+1)-1,k-2),{n,1,2}],{k,1,12}]
{5, 27, 76, 140, 176, 153, 92, 37, 9, 1, 0, 0}
135名無し生涯学習
2019/07/02(火) 17:47:35.36ID:A7uGqeTb0 Table[2n-1+{(n+2)mod4},{n,1,10}]
{4, 3, 6, 9, 12, 11, 14, 17, 20, 19}
Table[-3C(0,n-1)+3C(1,n-10),{n,1,10}]
{-3, 0, 0, 0, 0, 0, 0, 0, 0, 3}
上式と下式を合成する
Table[2n-1+{(n+2)mod4}-3C(0,n-1)+3C(1,n-10),{n,1,10}]
{1, 3, 6, 9, 12, 11, 14, 17, 20, 22}
{4, 3, 6, 9, 12, 11, 14, 17, 20, 19}
Table[-3C(0,n-1)+3C(1,n-10),{n,1,10}]
{-3, 0, 0, 0, 0, 0, 0, 0, 0, 3}
上式と下式を合成する
Table[2n-1+{(n+2)mod4}-3C(0,n-1)+3C(1,n-10),{n,1,10}]
{1, 3, 6, 9, 12, 11, 14, 17, 20, 22}
136名無し生涯学習
2019/07/02(火) 20:25:42.79ID:A7uGqeTb0 /_/_/_/_/_/_/_/_/_/_/_/
137名無し生涯学習
2019/07/03(水) 17:19:00.00ID:c1kn1rhY0 Table[C(1,(10mod n)-2),{n,1,9}]
{0, 0, 0, 1, 0, 0, 1, 1, 0}
{0, 0, 0, 1, 0, 0, 1, 1, 0}
138名無し生涯学習
2019/07/03(水) 17:35:42.90ID:c1kn1rhY0 Table[C(0,(11mod n)-1),{n,1,9}]
{0, 1, 0, 0, 1, 0, 0, 0, 0}
☆☆☆
{0, 1, 0, 0, 1, 0, 0, 0, 0}
☆☆☆
139名無し生涯学習
2019/07/03(水) 17:42:38.67ID:c1kn1rhY0 Table[sum[C(2n-1+C(0,6mod n)-C(0,n-2)-C(0,n-5),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,(11mod n)-1),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
Table[sum[C(2n-1+C(0,6mod n)-C(0,(11mod n)-1),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
140名無し生涯学習
2019/07/03(水) 17:55:46.98ID:c1kn1rhY0 3×4の場合
宝:1個 同等
宝:2〜7個 長軸有利
宝:8〜12個 同等
□■■■
□□■■
□□□■
宝:1個 同等
宝:2〜7個 長軸有利
宝:8〜12個 同等
□■■■
□□■■
□□□■
141名無し生涯学習
2019/07/03(水) 18:09:13.76ID:c1kn1rhY0 Table[C(0,(21mod n)-1),{n,1,9}]
{0, 1, 0, 1, 1, 0, 0, 0, 0}
☆☆☆☆☆
{0, 1, 0, 1, 1, 0, 0, 0, 0}
☆☆☆☆☆
142名無し生涯学習
2019/07/03(水) 18:17:56.98ID:c1kn1rhY0 >>128
二つにできた
Table[sum[C(2n-1+C(0,(21mod n)-1),k-1),{n,1,9}],{k,1,20}]
{9, 84, 463, 1776, 5076, 11249, 19797, 28057, 32243, 30095,
22749, 13820, 6656, 2486, 695, 137, 17, 1, 0, 0}
二つにできた
Table[sum[C(2n-1+C(0,(21mod n)-1),k-1),{n,1,9}],{k,1,20}]
{9, 84, 463, 1776, 5076, 11249, 19797, 28057, 32243, 30095,
22749, 13820, 6656, 2486, 695, 137, 17, 1, 0, 0}
143名無し生涯学習
2019/07/04(木) 15:04:11.60ID:sJNz/scu0 Table[C(-1,n),{n,1,10}]
{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
144名無し生涯学習
2019/07/04(木) 15:06:12.93ID:sJNz/scu0 Table[C(-2,n),{n,1,10}]
{-2, 3, -4, 5, -6, 7, -8, 9, -10, 11}
{-2, 3, -4, 5, -6, 7, -8, 9, -10, 11}
145名無し生涯学習
2019/07/04(木) 15:09:24.68ID:sJNz/scu0 a_n = (-1)^n (n+1)
{-2, 3, -4, 5, -6, 7, -8, 9, -10, 11}
FindSequenceFunction[{-2, 3, -4, 5, -6, 7, -8, 9, -10, 11}, n]
{-2, 3, -4, 5, -6, 7, -8, 9, -10, 11}
FindSequenceFunction[{-2, 3, -4, 5, -6, 7, -8, 9, -10, 11}, n]
146名無し生涯学習
2019/07/04(木) 15:10:07.02ID:sJNz/scu0 ΠΠΠΠΠΠ
ΠΠΠΠΠΠ
ΠΠΠΠΠΠ
ΠΠΠΠΠΠ
ΠΠΠΠΠΠ
147名無し生涯学習
2019/07/04(木) 15:12:38.30ID:sJNz/scu0 a_n = (-1)^n
{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
FindSequenceFunction[{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, n]
{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
FindSequenceFunction[{-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, n]
148名無し生涯学習
2019/07/04(木) 15:17:18.95ID:sJNz/scu0 Table[-1 mod n,{n,1,10}]
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
(-1) mod n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
(-1) mod n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
149名無し生涯学習
2019/07/04(木) 15:37:37.27ID:sJNz/scu0 Table[C(C(-3,n),2),{n,1,10}]
{6, 15, 55, 105, 231, 378, 666, 990, 1540, 2145}
Table[Binomial[Binomial[-3, n], 2], {n, 1, 10}]
{6, 15, 55, 105, 231, 378, 666, 990, 1540, 2145}
Table[Binomial[Binomial[-3, n], 2], {n, 1, 10}]
150名無し生涯学習
2019/07/04(木) 15:48:50.74ID:sJNz/scu0 ξ μ λ ψ ζ
κ η ι ξ Π ζ
κ η ι ξ Π ζ
151名無し生涯学習
2019/07/04(木) 18:23:35.16ID:sJNz/scu0 Table[C(1,(12mod n)-2),{n,1,29}]
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0}
{0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0}
152名無し生涯学習
2019/07/05(金) 16:35:26.31ID:W1XIEkip0 モジュラー形式
楕円関数
楕円関数
153名無し生涯学習
2019/07/05(金) 16:43:47.86ID:W1XIEkip0 "分母が小さいにも関わらず考えている数にかなり近い"
有理数を作れるかが勝負なのです
314159265/100000000=3.14159265
355/113≒3.14159292
『三桁の分母である後者の方が
円周率への近似としてはるかに優秀なのです』
有理数を作れるかが勝負なのです
314159265/100000000=3.14159265
355/113≒3.14159292
『三桁の分母である後者の方が
円周率への近似としてはるかに優秀なのです』
154名無し生涯学習
2019/07/05(金) 19:46:37.68ID:W1XIEkip0 domino tiling with free boundary conditions
155名無し生涯学習
2019/07/06(土) 14:51:40.54ID:B9pZQ9oJ0 Table[sum[C(2n-1+C(0,6mod n)-C(0,n-2)-C(0,n-5),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,(11mod n)-1),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,n-2)+C(1,n-4),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,(21mod n)-1),k-1),{n,1,9}],{k,1,20}]
Cを一つ減らして式は短い
下の式のほうが格上
Cは組合せ(combination)や選択(choice)を表している
Table[sum[C(2n-1+C(0,6mod n)-C(0,(11mod n)-1),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,n-2)+C(1,n-4),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,(21mod n)-1),k-1),{n,1,9}],{k,1,20}]
Cを一つ減らして式は短い
下の式のほうが格上
Cは組合せ(combination)や選択(choice)を表している
156名無し生涯学習
2019/07/06(土) 19:51:59.19ID:B9pZQ9oJ0 素因数分解(Prime-Factor)
素数テーブル(Prime-Table)
素数判定(Is-Prime)
組合せ(Combination)
行列演算(Matrix)
進数変換(Convert-Base)
階乗(Factorial)
離散対数問題(Mod-Log)
高速フーリエ変換(Fast-Fourier-Transform)
素数テーブル(Prime-Table)
素数判定(Is-Prime)
組合せ(Combination)
行列演算(Matrix)
進数変換(Convert-Base)
階乗(Factorial)
離散対数問題(Mod-Log)
高速フーリエ変換(Fast-Fourier-Transform)
157名無し生涯学習
2019/07/06(土) 19:52:35.65ID:B9pZQ9oJ0 FromDigits[{0,1,0,0,0,0,1,1,1,0,0,0,0,0}, 2]
4320
4320
158名無し生涯学習
2019/07/06(土) 20:14:54.78ID:B9pZQ9oJ0 超幾何級数
a(n)=Hypergeometric1F1[-n;-2n;-2]
Table[1F1(-n,-2n,-2),{n,1,10}]
a(n)=Hypergeometric1F1[-n;-2n;-2]
Table[1F1(-n,-2n,-2),{n,1,10}]
159名無し生涯学習
2019/07/06(土) 20:28:53.66ID:B9pZQ9oJ0 Table[Sum[(n!/(n-k)!)((2n-k)!/(2n)!)((-2)^k/k!),{k,0,n}],{n,1,20}]
160名無し生涯学習
2019/07/06(土) 20:33:19.41ID:B9pZQ9oJ0 N組のカップル(合わせて2N人)が無作為に横一列に並ぶ
どのカップルについても彼氏と彼女が隣り合わない
確率を求めよ
a(n)=a(n-1)+a(n-2)/((2n-1)(2n-3)),a(1)=0,a(2)=1/3
Sum[(n!/(k!(n-k)!))(k!(2n-k)!/(2n)!)((-2)^k/(k!)), {k, 0, n}]
Table[Sum[(n!/(n-k)!)((2n-k)!/(2n)!)((-2)^k/k!),{k,0,n}],{n,1,20}]
Table[1F1(-n,-2n,-2),{n,1,20}]
▲_▲
(´・ω・`)
_(__つ/ ̄ ̄ ̄/_
\/ /
 ̄ ̄ ̄ ̄
どのカップルについても彼氏と彼女が隣り合わない
確率を求めよ
a(n)=a(n-1)+a(n-2)/((2n-1)(2n-3)),a(1)=0,a(2)=1/3
Sum[(n!/(k!(n-k)!))(k!(2n-k)!/(2n)!)((-2)^k/(k!)), {k, 0, n}]
Table[Sum[(n!/(n-k)!)((2n-k)!/(2n)!)((-2)^k/k!),{k,0,n}],{n,1,20}]
Table[1F1(-n,-2n,-2),{n,1,20}]
▲_▲
(´・ω・`)
_(__つ/ ̄ ̄ ̄/_
\/ /
 ̄ ̄ ̄ ̄
161名無し生涯学習
2019/07/06(土) 20:35:29.42ID:B9pZQ9oJ0 ■n=3のとき、10/49となる関数を125種類作成
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,0,124},{n,3,3}]
■aの値を逆向きに入力して同じ出力となる関数
Table[((n-13)(a+4n+1))/(a(n-52)+7n^2-216n-52),{a,0,124},{n,3,3}]
∵[0≦a≦124]
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,0,124},{n,3,3}]
■aの値を逆向きに入力して同じ出力となる関数
Table[((n-13)(a+4n+1))/(a(n-52)+7n^2-216n-52),{a,0,124},{n,3,3}]
∵[0≦a≦124]
162名無し生涯学習
2019/07/06(土) 20:36:41.15ID:B9pZQ9oJ0 ■1/4,10/49,0はすべて共通
Table[((n-13)(a+4n+1))/(a(n-52)+7n^2-216n-52),{a,0,5},{n,0,13}]
■n=0のときはすべて1/4
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,0,124},{n,0,0}]
■n=13のときはすべて0
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,0,124},{n,13,13}]
Table[((n-13)(a+4n+1))/(a(n-52)+7n^2-216n-52),{a,0,5},{n,0,13}]
■n=0のときはすべて1/4
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,0,124},{n,0,0}]
■n=13のときはすべて0
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,0,124},{n,13,13}]
163名無し生涯学習
2019/07/06(土) 20:57:47.64ID:B9pZQ9oJ0 ■aに大きな数を入力しても10/49が出力される
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,9876,9888},{n,3,3}]
■無量大数の世界でも10/49を出力する
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,10^68,10^68+5},{n,3,3}]
■1000無量大数の世界でも10/49を出力する
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,10^71,10^71+150},{n,3,3}]
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,9876,9888},{n,3,3}]
■無量大数の世界でも10/49を出力する
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,10^68,10^68+5},{n,3,3}]
■1000無量大数の世界でも10/49を出力する
Table[((n-13)(a-4n-125))/(a(n-52)-7n^2+92n+6500),{a,10^71,10^71+150},{n,3,3}]
164名無し生涯学習
2019/07/06(土) 21:01:58.47ID:B9pZQ9oJ0 ■100!の世界でも10/49を出力する
(100!/10^71)/10^71≧9×10^15
なので100!は
1000無量大数×1000無量大数×9000兆以上の大きさ
Table[(n-13)(a-4n-125)/(a(n-52)-7n^2+92n+6500),{a,100!,100!+150},{n,3,3}]
(100!/10^71)/10^71≧9×10^15
なので100!は
1000無量大数×1000無量大数×9000兆以上の大きさ
Table[(n-13)(a-4n-125)/(a(n-52)-7n^2+92n+6500),{a,100!,100!+150},{n,3,3}]
165名無し生涯学習
2019/07/06(土) 21:07:59.47ID:B9pZQ9oJ0 ■n=3のとき10/49
Table[1-(165n-3n^2+39)/(216n-7n^2+52),{n,0,13}]
Table[1-(165n-3n^2+78)/(215n-7n^2+104),{n,0,13}]
Table[1-(165n-3n^2+117)/(214n-7n^2+156),{n,0,13}]
Table[1-(165n-3n^2+156)/(213n-7n^2+208),{n,0,13}]
Table[1-(165n-3n^2+195)/(212n-7n^2+260),{n,0,13}]
Table[1-(165n-3n^2+234)/(211n-7n^2+312),{n,0,13}]
Table[1-(165n-3n^2+273)/(210n-7n^2+364),{n,0,13}]
Table[1-(165n-3n^2+312)/(209n-7n^2+416),{n,0,13}]
165,-3,-7を変えない限り、
点(0,1/4),(3,10/49),(13,0) を必ず通る
定数bを定めて式を一般化する
Table[1-(165n-3n^2+(39+39b))/((216-b)n-7n^2+(52+52b)),{b,3,4},{n,0,13}]
∵[0≦b≦7]
Table[1-(165n-3n^2+39)/(216n-7n^2+52),{n,0,13}]
Table[1-(165n-3n^2+78)/(215n-7n^2+104),{n,0,13}]
Table[1-(165n-3n^2+117)/(214n-7n^2+156),{n,0,13}]
Table[1-(165n-3n^2+156)/(213n-7n^2+208),{n,0,13}]
Table[1-(165n-3n^2+195)/(212n-7n^2+260),{n,0,13}]
Table[1-(165n-3n^2+234)/(211n-7n^2+312),{n,0,13}]
Table[1-(165n-3n^2+273)/(210n-7n^2+364),{n,0,13}]
Table[1-(165n-3n^2+312)/(209n-7n^2+416),{n,0,13}]
165,-3,-7を変えない限り、
点(0,1/4),(3,10/49),(13,0) を必ず通る
定数bを定めて式を一般化する
Table[1-(165n-3n^2+(39+39b))/((216-b)n-7n^2+(52+52b)),{b,3,4},{n,0,13}]
∵[0≦b≦7]
166名無し生涯学習
2019/07/06(土) 21:11:24.19ID:B9pZQ9oJ0 奇数[1 0 1 0 1 0 1 0 1 0 1 0 1 0]のみ出力する関数は
((-1)^(n+1)+1)/2
偶数[0 1 0 1 0 1 0 1 0 1 0 1 0 1]のみ出力する関数は
((-1)^n+1)/2
((-1)^(n+1)+1)/2
偶数[0 1 0 1 0 1 0 1 0 1 0 1 0 1]のみ出力する関数は
((-1)^n+1)/2
167名無し生涯学習
2019/07/06(土) 21:12:54.62ID:B9pZQ9oJ0 Domino tiling with free boundary conditions
168名無し生涯学習
2019/07/06(土) 21:46:12.42ID:B9pZQ9oJ0 フィボナッチ数列の最初の2項を
2, 1 に置き換えた数列の項をリュカ数という
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843,
1364, 2207, 3571, 5778, …
この数列の一般項は
Ln=((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n
2, 1 に置き換えた数列の項をリュカ数という
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843,
1364, 2207, 3571, 5778, …
この数列の一般項は
Ln=((1+sqrt(5))/2)^n+((1-sqrt(5))/2)^n
169名無し生涯学習
2019/07/06(土) 21:47:47.98ID:B9pZQ9oJ0 Functional Analysis
170名無し生涯学習
2019/07/07(日) 13:20:57.94ID:m2f98QtW00707 Table[C(0,C(3,n-2)-1),{n,1,13}]
{0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}
{0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}
171名無し生涯学習
2019/07/07(日) 13:29:41.77ID:m2f98QtW00707 長軸有利☆
Table[sum[C(2n-1+C(0,n-1)+C(0,n-3)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,3mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,n-2)-C(0,n-5),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,(11mod n)-1),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,C(3,n-2)-1),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
すべて同じ出力
Table[sum[C(2n-1+C(0,n-1)+C(0,n-3)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,3mod n)-C(0,n-5)+C(0,n-6),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,n-2)-C(0,n-5),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,(11mod n)-1),k-1),{n,1,9}],{k,1,20}]
Table[sum[C(2n-1+C(0,6mod n)-C(0,C(3,n-2)-1),k-1),{n,1,9}],{k,1,20}]
{9, 83, 453, 1753, 5075, 11353, 20057, 28400, 32528, 30250,
22803, 13831, 6657, 2486, 695, 137, 17, 1, 0, 0}
すべて同じ出力
172名無し生涯学習
2019/07/07(日) 14:06:22.28ID:m2f98QtW00707 Table[C(0,C(0,C(5,n-22))),{n,1,29}]
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 0, 0}
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 0, 0}
173名無し生涯学習
2019/07/08(月) 19:52:46.33ID:2mHwKB4y0 ■スイッチング関数
Table[-C(1,n-2)+C(1,n-5)+C(1,n-9)+C(1,n-10),{n,1,10}]
Table[-C(1,n-2)+C(1,n-5)+C(2,n-9),{n,1,10}]
{0, -1, -1, 0, 1, 1, 0, 0, 1, 2}
Table[-C(1,n-2)+C(1,n-5)+C(1,n-9)+C(1,n-10),{n,1,10}]
Table[-C(1,n-2)+C(1,n-5)+C(2,n-9),{n,1,10}]
{0, -1, -1, 0, 1, 1, 0, 0, 1, 2}
174名無し生涯学習
2019/07/08(月) 20:08:51.80ID:2mHwKB4y0 ■複素数体上での偏極アーベル多様体(polarised abelian variety)
175名無し生涯学習
2019/07/08(月) 21:13:27.66ID:2mHwKB4y0 a_n=(n+3)mod4
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
176名無し生涯学習
2019/07/09(火) 16:15:23.92ID:FNSmR7Rj0 n-1/2 (floor(sqrt(2) sqrt(n)+1/2)-1) floor(sqrt(2) sqrt(n)+1/2)
n-binomial(floor((1+sqrt(8*n))/2),2)
{{1, 1}, {2, 1}, {3, 2}, {4, 1}, {5, 2}, {6, 3}, {7, 1}, {8, 2}, {9, 3}, {10, 4}}
n-binomial(floor((1+sqrt(8*n))/2),2)
{{1, 1}, {2, 1}, {3, 2}, {4, 1}, {5, 2}, {6, 3}, {7, 1}, {8, 2}, {9, 3}, {10, 4}}
177名無し生涯学習
2019/07/09(火) 16:19:24.17ID:FNSmR7Rj0 Table[n-binomial(floor((1+sqrt(8*n))/2),2),{n,1,66}]
{1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
{1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
178名無し生涯学習
2019/07/09(火) 16:24:10.82ID:FNSmR7Rj0 Table[C(1,(n+1)-binomial(floor((1+sqrt(8*(n+1)))/2),2)),{n,1,66}]
{1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
☆☆☆☆☆☆
{1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
☆☆☆☆☆☆
179名無し生涯学習
2019/07/09(火) 16:36:36.90ID:FNSmR7Rj0 Table[(2(n+1)+round(sqrt(2(n+1)))-round(sqrt(2(n+1)))^2)/2,{n,1,65}]
{1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
{1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
180名無し生涯学習
2019/07/09(火) 17:11:09.15ID:FNSmR7Rj0 Table[C(1,(n+1)-C(floor((1+sqrt(8*(n+1)))/2),2)),{n,1,66}]
入力可能
入力可能
181名無し生涯学習
2019/07/09(火) 19:14:52.77ID:FNSmR7Rj0 69, 67, 65, 63, 61, 59, 57, 56,
52, 50, 48, 46, 44, 43, 42,
37, 35, 33, 32, 31, 30,
24, 23, 22, 21, 20,
15, 14, 13, 12,
8, 7, 6,
3, 2
規則性は?
2 6 12 20 30 42 56は三角数の位置
52, 50, 48, 46, 44, 43, 42,
37, 35, 33, 32, 31, 30,
24, 23, 22, 21, 20,
15, 14, 13, 12,
8, 7, 6,
3, 2
規則性は?
2 6 12 20 30 42 56は三角数の位置
182名無し生涯学習
2019/07/09(火) 19:42:19.47ID:FNSmR7Rj0 ■8x9マス長軸かなり短縮したのにテーブル出力不可
sum[C(2n-1+C(0,3mod n)+C(0,n-6 mod15)+C(0,n-10 mod18)+C(0,n-15)-C(0,n-5 mod22)-3C(0,n-9)-3C(1,n-13)-7C(0,n-20)-C(1,n-23)-C(1,n-25),k-1),{n,1,35}],k=16
sum[C(2n-1+C(1,(n+1)-C(floor((1+sqrt(8*(n+1)))/2),2))-C(0,n-5)-3C(0,n-9)-3C(1,n-13)-7C(0,n-20)-C(0,C(0,C(4,n-23))),k-1),{n,1,35}],k=16
1399743796844505
sum[C(2n-1+C(0,3mod n)+C(0,n-6 mod15)+C(0,n-10 mod18)+C(0,n-15)-C(0,n-5 mod22)-3C(0,n-9)-3C(1,n-13)-7C(0,n-20)-C(1,n-23)-C(1,n-25),k-1),{n,1,35}],k=16
sum[C(2n-1+C(1,(n+1)-C(floor((1+sqrt(8*(n+1)))/2),2))-C(0,n-5)-3C(0,n-9)-3C(1,n-13)-7C(0,n-20)-C(0,C(0,C(4,n-23))),k-1),{n,1,35}],k=16
1399743796844505
183名無し生涯学習
2019/07/09(火) 20:33:10.32ID:FNSmR7Rj0 長軸三角数位置1アップ関数
Table[C(1,(n+1)-C(floor((1+sqrt(8(n+1)))/2),2)),{n,1,66}]
Table[C(1,(n+1)-C(floor((1+sqrt(8(n+1)))/2),2)),{n,1,66}]
184名無し生涯学習
2019/07/09(火) 22:15:01.72ID:FNSmR7Rj0 λλΠλΠΣΨΣΨΠΔ
ΣλΠΣΨτΨδζοΓ
ΣλΠΣΨτΨδζοΓ
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 30代の中国籍の男逮捕 東京ディズニーシーのホテルミラコスタ宴会場に刃物持ち侵入、逃走 [どどん★]
- 【速報】中国、高市氏答弁撤回求め国連に2度目書簡 ★4 [蚤の市★]
- 児童の4割が外国ルーツ、どうすれば「共生」できるのか 「違うのが当たり前」大阪・西成の小学校…日本語教室で互いに「知ってみよう」 [少考さん★]
- 【テレビ】玉川徹「僕はマイナンバーカードを持っていない。不便だと感じたことは一回もない」「使いたい人だけにすればいい」★2 [冬月記者★]
- 立憲女性議員「流行語大賞」にツッコミ「いつから『流行させたい語大賞』になったのだろう」に意見続々 [muffin★]
- 植田日銀総裁 「利上げが遅れれば、米欧のように非常に高いインフレが起きて、日本は大幅な利上げが必要となる」 ★3 [お断り★]
- 政府、高市首相の「戦艦」という言葉は言い間違いではないと閣議決定 [256556981]
- 【高市】日米関係筋「トランプ氏から似た発言はあったがWSJの報じたように日中の対立を激化させないようにしようという文脈ではない」 [931948549]
- 【速報】ディズニーホテル刃物男、中国籍の男を確保wwwwwwwwwwwwwwwwwwwwwwwwwww [279254606]
- 松本人志のダウンタウンプラス、逝く。 [153490809]
- 【画像】コンカフェキャストの無加工、ガチで地獄wwwwwwwwwwwwwwwwwwww [802034645]
- なんかガチで中国の台湾武力統一を支持してそうなやつ嫌儲にちらほらいるけど、ガチで「支那人」だったりするの?こわい…😱 [784715804]
